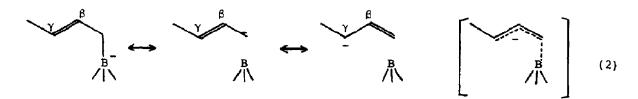
Tetrahedron Letters Vol. 21, pp 3599 - 3602 ©Pergamon Press Ltd. 1980. Printed in Great Britain

0040-4039/80/0908-3599\$02.00/0

 13 C NMR SPECTRA OF ALLYLIC BORON "ATE" COMPLEXES. RELATIVE IMPORTANCE OF σ - π conjugation between the double bond and the carbon-boron bond


Yoshinori Yamamoto,^{*} Hidetaka Yatagai, Yoshinori Naruta, and Kazuhiro Maruyama Department of Chemistry, Faculty of Science, Kyoto University Kyoto 606, Japan

Tadashi Okamoto


Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

<u>Summary</u>: Carbon-13 NMR spectra of allylic boron "ate" complexes clearly indicate, for the first time, the relative importance of σ - π conjugation between the double bond and the carbon-boron bond.

We recently reported that allylic boron "ate" complexes undergo a facile and regioselective haid-to-tail coupling with allylic halides,¹ while the corresponding trivalent allylic borons do not react with such halides (eq 1).

This result suggests that the C_{γ} of the "ate" complexes must bear negative charge as is shown by a pair of resonance structures (eq 2). We here report the first evidence for the presence of such a conjugation with the aid of ¹³C NMR spectra.

Compound	pound Chemical Shift ^b			Substituent Effec	
	δC _β	a constantina	δC _γ	۵۵C _β	<u>۵۵</u> С
CH ₃ C _y H=C _β HCH ₂ B	138.3 ([136.6] ^d	e	12.5[12.3]	е
$CH_3C_{\gamma}H=C_{\beta}HCH_2B_{n-Bu}^{Li}$	140.5 [[139.1]	122.6[122.3]	14.7[14.8]	-3.2 [-2.0]
$c_{\gamma}H_2 = c_{\beta}HCH_2B$	136.6		(114.0) ^f	3.5	(-1.0)
$c_{\gamma}H_2 = c_{\beta}HCH_2B = 0$	149.3		109.5	16.2	-5.5
$CH_{3}C_{\gamma}H_{2}C_{\beta}H_{2}CH_{2}B $	28.2		27.5	3.2	2.5
$CH_{3}C_{\gamma}H_{2}C_{\beta}H_{2}CH_{2}B \stackrel{\text{Li}}{\underset{n-Bu}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}{\overset{\text{Li}}{\overset{\text{Li}}{\overset{\text{Li}}{\overset{\text{Li}}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}}{\overset{\text{Li}}}{\overset{\text{Li}}}{\overset{\text{Li}}{\overset{\text{Li}}}}{\overset{\text{Li}}{\overset{\text{Li}}}}{\overset{\text{Li}}}{\overset{\text{Li}}}}}}}}}}}}}}}}}}}}}}$	29.9		28.9	4.9	3.9
$C_{\gamma}H_{3}C_{\beta}H_{2}CH_{2}B(n-Pr)_{2}^{g}$	18.1		17.6	2.0	2.0
$\begin{array}{c} \mathbf{Li}^{+} \\ \mathbf{C}_{\gamma^{H} 3} \mathbf{C}_{\beta^{H} 2} \mathbf{C}_{1}^{CHB} (sec-Bu) 2 (n-Bu)^{h} \\ \mathbf{CH}_{3} \end{array}$	27.1		15.2	2.1	2.0
сн ₃ с _у н=с _в нсн ₃ ⁱ	125.8[1	24.3]	125.8[124.3]		
C _γ H ₂ =C _β HCH ₃ ⁱ	133.1		115.0		
$c_{\text{H}_{3}}c_{\gamma}^{\text{H}_{2}}c_{\beta}^{\text{H}_{2}}c_{\text{H}_{3}}^{\text{i}}$	25.0		25.0		
$c_{\gamma}^{H_{3}}c_{\beta}^{H_{2}}c_{\beta}^{H_{2}}c_{\beta}^{H_{2}}c_{H_{3}}^{i}$	25.0		13.2		
с _ү н ₃ с _β н ₂ сн ₃ ⁱ	16.1		15.6		

Table J. Carbon-13 Chemical Shifts and Substituent Effects of Tri- and Tetravalent Boron Atoms^a

^a All spectra were assigned by noise-modulated proton decoupling.Single-freque: off-resonance decoupled spectra were used to assign the resonance in questional

Table 1. (continued)

cases. ^b In parts per million (\pm 0.1) (downfield positive) from Me₄Si, conver using $\delta(C_6D_6)$ 128.7. Chemical shifts of other carbons, not important in the present discussion, are omitted. ^C In parts per million with respect to the corresponding hydrocarbons (2-butene, propene, butane, and propane). Higher values correspond to lower shielding. ^d [cis isomer]. ^e Not obvious owing t the rapid allylic rearrangement. ^f Estimated value from a broad peak. ^g D. J. Hart and W. T. Ford, J. Org. Chem., <u>39</u>, 363 (1974). ^h Several assumptions are made owing to the lack of an appropriate sample. For example, CH₃CH₂(CH₃)CH- is used instead of CH₃CH₂CH₂-. B refers to 9-borabicyclo[3.3.1]nonane.

Table 2. Difference in Substituent Effect between Tri- and Tetravalent Boron Atoms^a

Compound	Substituent	۵۵۵۵β	۵۵۶C _γ	
сн ₃ с _у н=с _в нсн ₂ -в	Trivalent B	9.3 [9.1] ^b	-	
	Tetravalent B	9.8 [9.9] ^b	-7.1 [-5.9] ^b	
С _ү н ₂ =С _β нсн ₂ -в≤	Trivalent B	1.5	(-3.0) ^C	
	Tetravalent \overline{B}	14.1	-7.5	

^a $\Delta\Delta\delta C_n = \Delta\delta C_n$ (allylic boron or borate) - $\Delta\delta C_n$ (alkylboron or borate). ^b [cis isomer]. ^C Estimated value. The carbon-13 chemical shifts of C_{β} and C_{γ} of allylic borons, allylic borates, alkylborons, alkylborates, olefins, and alkanes are summarized in the Table 1. The substituent effects of tri- and tetravalent boron atoms, listed in the Table 1, are obtained as previously described.² Table 2 summarizes the difference in substituent effect between tetra- and trivalent boron atoms. Comparison of the data leads to the following conclusions; i) the γ -carbons are shielded, while the β -carbons are deshielded by both tri- and tetravalent boron atoms; ii) the extent of the shielding and deshielding is greater in the tetravalent borons (ate complexes) than in the trivalent borons. Consequently the present work clearly indicates the relative importance of the σ - π conjugation between the C-B \leq bond and the π system in allylic boron "ate" complexes.³

Acknowledgment.

We gratefully acknowledge support by the Ministry of Education, Science and Culture (Grant-in-Aid for Scientific Research 484027).

References and Notes

- 1) a) Y. Yamamoto and K. Maruyama, J. Am. Chem. Soc., <u>100</u>, 6282 (1978).
 - b) Y. Yamamoto, H. Yatagai, and K. Maruyama, J. Chem. Soc. Chem. Commun., 157 (1979).
 - c) Y. Yamamoto, H. Yatagai, and K. Maruyama, Chem. Lett., 385 (1979).
 - d) Y. Yamamoto, H. Yatagai, and K. Maruyama, J. Org. Chem., 45, 195 (1980).
- 2) Y. Yamamoto and I. Moritani, J. Org. Chem., 40, 3434 (1975).
- For a leading reference on σ-π conjugation on allylic organometallics and related compounds, see the following articles.
 a) G. Hartman and T. G. Traylor, Tetrahedron Lett., 939 (1975).
 - b) A. Hosomi and T. G. Traylor, J. Am. Chem. Soc., 97, 3682 (1975).

(Received in Japan 4 June 1980)